Model Questions

Department of Physics Government General Degree College, Chapra Course Title- Mathematical Physics Semester – I

1.	(a) Plot the function $f(x) = x^2$ and its first derivative.	2
	(b) Find the series expansion of $\frac{1}{1-x}$. Mention its interval of convergence. 2+:	1
2.	(a) Check whether $dw = 2xydx + x^2dy$ is an exact differential.	2
	(b) Solve the differential equation :- $(D^2 + 1)y = \cos x + e^x \sin x$	3
3.	(a) Solve the differential equation $(x + 1)\frac{dy}{dx} - y = e^x (x + 1)^2$.	3
	(b) Find the Taylor series expansion of lnx about $x = 2$.	2
4.	Solve the equation –	
	y'' + 6y' + 8y = 0, subject to the condition $y = 1$, $y' = 0$ at $x = 0$,	
	where, $y' = \frac{dy}{dx}$ and $y'' = \frac{d^2y}{dx^2}$.	5
5.	(a) Find a unit vector normal to $\vec{A} = 2\hat{\imath} + 4\hat{\jmath} - 5\hat{k}$ and $\vec{B} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$.	2
	(b) Using Stoke's law, prove that $\vec{\nabla} \times \vec{\nabla} \phi = 0$.	3
6.	(a) The position vectors of three points A, B and C are $\vec{r_1} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{r_2} = 3\hat{i} + 2\hat{j} - 3\hat{k}$	ƙ
	and $\vec{r_3} = 2\hat{\imath} + 2\hat{\jmath} - 3k$. Find the area of the triangle.	3
	(b) $\vec{\omega}$ is a constant vector and \vec{r} is the position vector of a point. If $\vec{v} = \vec{\omega} \times \vec{r}$, then	n
	prove that $\nabla . \vec{v} = 0.$	2
7.	If $\vec{F} = x^2 \hat{\imath} + y^2 \hat{\jmath}$, then find the line integral $\int_c^{\cdot} \vec{F} \cdot d\vec{r}$ in the x - y plane along a line	
	$y = x^2$ from $P(0,0)$ to $Q(1,1)$.	5
8.	(a) Find the eigenvalues of the matrix $\begin{pmatrix} 3 & i \\ -i & 3 \end{pmatrix}$.	2
	(b) Prove that the modulus of each characteristic root of a unitary matrix is unity.	3
9.	(a) Using elementary operations, find inverse of matrix:	
	$A = \begin{pmatrix} -1 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$	5
	$ \begin{array}{c} A = \begin{pmatrix} 0 & 2 & 1 \\ -1 & 3 & 4 \end{pmatrix} $,
	(b) Prove that the eigenvalue of a skew Hermitian is purely imaginary.	2

- 10. Solve the following 1^{st} order differential equation: (6 x 3 = 18)
 - a. $(1 + x^2)dy xy dx = 0$ b. $x(x - y)dy + y^2 dx = 0$ c. $secx \frac{dy}{dx} = y + sinx$ d. $x \log x \frac{dy}{dx} + y = 2 \log x$ e. $\frac{dy}{dx} = y tanx - y^2 secx$ f. $(2xy + e^y)dx + (x^2 + xe^y)dy = 0$
- 11. Solve the following 2^{nd} order differential equation: (10 x 4 = 40)
 - a. $[D^2 + 5D + 6][y] = e^x$ b. $[D^2 - 3D + 2][y] = e^{3x}$
 - $[D^2 3D + 2][y] = e^{3x}$
 - c. $[D^3 + 2D^2 D 2][y] = e^x$
 - d. $[D^2 + 2D + 2][y] = \sinh x$
 - e. $[D^2 + 5D + 4][y] = 3 2x$
 - f. $[D^2 4D + 3][y] = x^3$
 - g. $[D^2 + 6][y] = \sin 4x$
 - h. $[D^2 5D + 6][y] = e^x sinx$
 - i. $[D^2 + 4][y] = 3x sinx$
 - j. $[D^2 + a^2][y] = \sec ax$